Limits involving $\ln (x)$

We can use the rules of logarithms given above to derive the following information about limits.

$$
\lim _{x \rightarrow \infty} \ln x=\infty, \quad \lim _{x \rightarrow 0} \ln x=-\infty
$$

- We saw the last day that $\ln 2>1 / 2$.
- Using the rules of logarithms, we see that $\ln 2^{m}=m \ln 2>m / 2$, for any integer m.
- Because $\ln x$ is an increasing function, we can make $\ln x$ as big as we choose, by choosing x large enough, and thus we have

$$
\lim _{x \rightarrow \infty} \ln x=\infty
$$

Similarly $\ln \left(\frac{1}{2^{n}}\right)=-n \ln 2<-n / 2$ and as x approaches 0 the values of $\ln x$ approach $-\infty$.

Example

Find the limit $\lim _{x \rightarrow \infty} \ln \left(\frac{1}{x^{2}+1}\right)$.

- As $x \rightarrow \infty$, we have $\frac{1}{x^{2}+1} \rightarrow 0$

Letting $u=\frac{1}{x^{2}+1}$, we have

$$
\lim _{x \rightarrow \infty} \ln \left(\frac{1}{x^{2}+1}\right)=\lim _{u \rightarrow 0} \ln (u)=-\infty
$$

Extending the antiderivative of $1 / x$

We can extend our antiderivative of $1 / x$ (the natural logarithm function) to a function with a larger domain by composing $\ln x$ with the absolute value function $|x|$. . We have :

$$
\ln |x|=\left\{\begin{array}{cc}
\ln x & x>0 \\
\ln (-x) & x<0
\end{array}\right.
$$

This is an even function with graph

We have $\ln |x|$ is also an antiderivative of $1 / x$ with a larger domain than $\ln (x)$.

$$
\frac{d}{d x}(\ln |x|)=\frac{1}{x} \text { and } \int \frac{1}{x} d x=\ln |x|+C
$$

Using Chain Rule for Differentiation

$$
\frac{d}{d x}(\ln |x|)=\frac{1}{x} \quad \text { and } \frac{d}{d x}(\ln |g(x)|)=\frac{g^{\prime}(x)}{g(x)}
$$

- Example 1: Differentiate $\ln |\sin x|$.
- Using the chain rule, we have

$$
\begin{aligned}
\frac{d}{d x} \ln |\sin x| & =\frac{1}{(\sin x)} \frac{d}{d x} \sin x \\
& =\frac{\cos x}{\sin x}
\end{aligned}
$$

Using Chain Rule for Differentiation : Example 2

Differentiate

$$
\ln |\sqrt[3]{x-1}|
$$

- We can simplify this to finding $\frac{d}{d x}\left(\frac{1}{3} \ln |x-1|\right)$, since

$$
\ln |\sqrt[3]{x-1}|=\ln |x-1|^{1 / 3}
$$

$$
\frac{d}{d x} \frac{1}{3} \ln |x-1|=\frac{1}{3} \frac{1}{(x-1)} \frac{d}{d x}(x-1)=\frac{1}{3(x-1)}
$$

Using Substitution

Reversing our rules of differentiation above, we get:

$$
\int \frac{1}{x} d x=\ln |x|+C \quad \text { and } \quad \int \frac{g^{\prime}(x)}{g(x)} d x=\ln |g(x)|+C
$$

$>$ Example Find the integral $\int \frac{x}{3-x^{2}} d x$

- Using substitution, we let $u=3-x^{2}$.

$$
\begin{gathered}
d u=-2 x d x, \quad x d x=\frac{d u}{-2} \\
\int \frac{x}{3-x^{2}} d x=\int \frac{1}{-2(u)} d u \\
=\frac{-1}{2} \ln |u|+C=\frac{-1}{2} \ln \left|3-x^{2}\right|+C
\end{gathered}
$$

